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Abstract. A model of solitary-wave excitation for B-DNA has been proposed by taking into 
account the stretching of the hydrogen bonds. Using the continuum approximation we have 
derived a non-linear Klein-Gordon equation which has the solitary-wave solution. The 
stretch amplitude of the solitary wave is found to be 0.37 A. The energy and width of the 
solitary wave are also estimated. It is shown by a linear stability analysis that the solitary 
wave is unstable. The numerical simulation of the non-linear differential-difference equation 
(i.e. the equation without using the continuum approximation) shows that the solitary wave 
is pinned by the lattice. An unstable pinned solitary wave is used to explain the opening 
mechanism of the bases in a DNA chain. 

1. Introduction 

The vibration modes of hydrogen-bond stretching in B-DNA at 10-120 cm-’ have been 
observed in both low-frequency Raman scattering [ 1,2]  and Fourier-transform infrared 
absorption [3]. According to the famous double-helix model of Watson and Crick, the 
base adenine (A) is always bound to the base thymine (T) with two hydrogen bonds, 
and the base guanine (G) to the base cytosine (C) with three hydrogen bonds. The above 
experimental results imply that the base and its complementary base may vibrate with 
each other along the direction of H bonds in a base pair. Chou [4] has developed a linear 
vibration theory of H-bond stretching in DNA and discussed some relevant biological 
functions. However, many workers (see, e.g., [5,6]) have pointed out that the H bond 
is essentially non-linear. On the other hand, from theoretical studies of helix lattice 
dynamics of DNA, Prohofsky [7] has pointed out independently that the modes of H- 
bond stretching at 10-120 cm-‘ are highly non-linear. He has also proposed a soliton 
model of H-bond stretching in DNA based on the Davydov solitary-wave analysis [7]. 
This work was stimulated by the studies of Chou and Prohofsky. I hope to improve 
Chou’s [4] work by considering the non-linear effect of H bonds. At the same time, but 
different from Prohofsky’s [7] theory, I hope also to establish a soliton model of H-bond 
stretching by assuming a concrete anharmonic potential of H bonds. The result shows 
that the non-linear effect of H bonds leads directly to the solitary-wave effects which are 
closely related to the energy concentration in DNA. Such solitary-wave or soliton effects 
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are useful to explain the mechanisms of RNA transcription and of drug intercalation into 
DNA and more generally to elucidate the breathing motion in the DNA double helix. 

2. A model of H-bond stretching 

Suppose that the displacements of the nth base and its complementary base along the 
direction of H bonds are denoted by U, and U;, respectively. For B-DNA the displacements 
are basically vertical to the helical axis 0 2  of DNA. Letting 

Y ,  = U, - U:, 

V ( Y , )  = AY? - BY: 

(2.1) 

(2.2) 

Yomosa [ 6 ]  has shown that the potential energy of H bonds takes the form 

where A and B are two parameters, both greater than zero. On the other hand, as long 
as vibration of the bases takes place, a change in stacking energy of the bases occurs. 
Denoting the change in stacking energy for the nth base in the single strand of the DNA 
double helix by AS,,, then [8] - 

AS, = ~S(U, - ~ ~ - 1 ) ~  + ;S(U,+~ - u , ) ~  (2 .3 )  
where S is another parameter. 

Finally, the Hamiltonian of the DNA system takes the form 

H = 2 (iM(li2 + UL2)  + V ( Y , )  + ~ S [ ( U ,  - ~ ~ - 1 ) ~  + (U; - u A - ~ ) ~ ] }  (2 .4 )  
n 

where M is the effective mass of a base. The equations of motion are quickly obtained: 

Mii, = -2A(un - U;) + 3B(un - u ; ) ~  + S(U,+~ -2u, + ~ ~ - 1 )  (2 .5~1)  

Mii; = ~ A ( u ,  - U;) -3B(u, ,  - u ; ) ~  + S(U;+~ - 2 ~ ;  + uA-1). (2 .5b)  

Hereafter we shall study an important special case, i.e. the relative motion of the bases, 

U, = - U;. 

MU, = - ~ A u ,  + 12Bui + S(U,+~ -2un + ~ ~ - 1 ) .  

Then equations (2 .5 )  reduce to 

(2 .6 )  
As usual we take the continuum approximation 

where a is the base spacing and equals 3.4 8, for B-DNA. In this case, equation (2 .6 )  
reduces to 

U, = c2uzz - mgu + A 2 U 2  (2.8) 

c2 = ( S / M ) a 2  m i  = 4A/M A 2  = 12B/M. (2.9) 

where U, means d2u/dt2 and so on, and 

Equation (2 .8 )  is a non-linear Klein-Gordon equation. If the last term on the right-hand 
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side of equation (2.8) is proportional to u3, then it is the well known q4 equation. In 
fact, it is not. To look for the travelling solution of equation (2.8), setting 

g = z - u t  

where U is the speed of the travelling wave, we obtain 
2 2  2 2 2  2 ug- = (WOY / c  >U - (A Y / c  > U 2  (2.10) 

where 

y = l/Vl - (v/c)2.  

U f  = - (2PY*/3C*)U3 + (w;y’/c’)u’ + c 

(2.11) 

(2.12) 

Multiplying both sides of equation (2.10) by u5 and performing the integral, we have 

where Cis  the integral constant. We rewrite equation (2.12) as 

= - a(u-ul)(u-U2)(U-U3) (ul ’ u 2  ’ u3) (2.13) 

where 

a = 2A2y2/3c2 (2.14) 

and ul ,  u2, u3 are the three roots of the following polynomial P(u): 

P(u)  = U3 - j(W;/P)U2 - c/a. (2.15) 

Obviously, we have 

U1 + U 2  + U 3  = g(o;/A2) 

~ 1 ~ 2  + ~ 2 ~ 3  + ~ 3 ~ 1  = 0 (2.16) 

U l U 2 U 3  = c/a. 
We have assumed that the three roots are all real. This assumption exerts a restriction 
on the constant C. The solution of equation (2.13) can be expressed as 

U = u2 + (ul  - u2) cn2Va(u l  - u3)/4 5 (2.17) 

where cn is the Jacobian elliptic function with modulus k:  

k = (U1 - u2)/(u1 - u3). (2.18) 

Hereafter we shall study the special boundary conditions 

ull*l-m = 0 u51151-x = 0 (2.19) 

which is reasonable for realistic DNA. In this case we have C = 0 and hence 

U 1  = j(w2/A2) U 2  = U 3  = 0 k =  1. (2.20) 

u(z,  t) = h(A/B) sech2[y(z - vt)/2d] (2.21) 

d = c/wg. (2.22) 

Then the solution (2.17) reduces to the following solitary wave: 

where 

It is interesting to see that the amplitude of the solitary wave in equation (2.21) is 
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determined solely by the H-bond potential. We can define the width of the solitary wave 
by the width at half-maximum: 

W = 4d. (2.23) 
We have also seen that the vibration of the H-bond stretching seems to support the energy 
concentration due to the non-linear effect of the H-bond potential. For a continuum 
approximation, the energy E, of the solitary wave can be calculated from the following 
integral : 

(2.24) 

Substituting equation (2.21) into (2.24) and performing the integral, we obtain 

where the first and second terms on the right-hand side of equation (2.25) correspond 
to the kinetic and potential energies, respectively, of the solitary wave. 

E ,  = h(A/B)*(M/ad)u* + g(A/B)2(d/a)A (2.25) 

When the displacement u is small, equation (2.8) approximately reduces to 

which is the famous Klein-Gordon equation. We obtain the phonon mode solution 
(2.27) 

wherep is the wavenumber. Substituting equation (2.27) into equation (2.26), we obtain 
the dispersion relation 

(2.28) 
It should be noted that in the case of some boundary conditions the solution of equation 
(2.26) is a standing wave which is the theoretical basis of Chou's [4] work. 

U,, = c*u,, - u ; u  (2.26) 

u(z,  t )  = exp[i(pz - u t ) ]  

u2 = u;  + c=p=,  

3. The linear stability analysis of the solitary wave 

We shall study the stability of the solitary-wave solution (2.21) by a technique presented 
by Scott et a l [ 9 ] ,  which is called the analysis of linear stability. For the reason explained 
later, we first assume that the speed of the solitary wave is equal to zero, i.e. U = 0; then 
equation (2.21) reduces to 

Now write the solution u ( z ,  t )  of equation (2.8) as the sum of U&)  and a perturbation 
term up(z, t ) ,  which will be assumed to be small in some sense. That is, 

Substituting equations (3.1) and (3.2) into equation (2.8), we find a non-linear equation 
for up(z, t ) :  

and note that u,(z) is a known function. Since up is small, the linear assumption is such 
that equation (3.3) approximately reduces to a linear equation 

To solve equation (3.4) we further assume the product solution 

where s is a parameter. According to Scott et al[9], 'The basic problem of linear stability 

u , ( z )  = i(A/B) sech2(z/2d). (3.1) 

u(2, t )  = u , ( z )  + up@,  t) .  

up,rt  - c2up,zz + u;up = /22[(u, + up)*  - U : ]  

up,tr  - c2up.,, = ( -u;  + 2A2u,)up. 

u p k ,  t> = v(z> exp(N 

( 3 4  

(3.3) 

(3.4) 

(3.5) 
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is to determine whether or not for any such product solution, with reasonable boundary 
conditions on li, as z+ * x, the real part of s is greater than zero.’ In particular, if 
any product solution has Re(s) > 0, the solitary-wave solution is said to be unstable. 
Substituting equation (3.5) into equation (3.4), we obtain 

- qz2 - (2A2/c2)usli, = - ( S f *  + W ; p ) q  s f  = s/c. ( 3 4  
Equation (3.6) is the Schrodinger equation and hence is an eigenvalue problem. 
Since the ‘potential’ is proportional to -us ,  we conclude that there are at most a finite 
number of bound-state solutions for which y -+ 0 as z-+ * i ~ .  The eigenvalue is 
- ( s I2  + w : / c 2 )  and the corresponding eigenfunction is q. We shall show that at least 
one solution of the Schrodinger equation (3.6) is already found. In fact, since U, satisfies 

C 2 U S , , ,  = W i U ,  - A 2 U Z  

c2 (d u,/d Z )  ,, = w 8 (d u,/d Z )  - 2A 2 ~ ,  (d u,/d Z )  

(3.7) 

(3.8) 

and on differentiation with respect to z ,  we have 

which is the same as the Schrodinger equation (3.6) when s = 0. Therefore one eigen- 
function is 

l i , ( ~ ) l ~ = ~  = du,/dz = - (1/2d)(A/B) sech2(z/2d) tanh(z/2d) (3.9) 
and the corresponding eigenvalue is - w ; / c 2 .  Note that there is one crossing of the 
eigenfunction in equation (3.9), we know that the solution in equation (3.9) is not the 
solution of the ‘ground state’. In fact, it is the solution of the ‘first excitation state’. The 
solution of the ground state must have a lower eigenenergy than - w; /c ’ .  That is to say, 
the eigenenergy of the ground state is - (sf + W ~ / C ’ )  with s t 2  or s2 > 0. According to 
the definition of the instability mentioned above, we thus conclude that, with respect to 
the boundary condition q -+ 0 as z -+ -+ a, the linear stability analysis shows that the 
solitary wave in equation (2.21) is unstable. In fact, it is shown by direct observation 
that the ground-state eigenfunction of the Schrodinger equation (3.6) is 

constant x sech3(z/2d) (3.10) 

with an eigenvalue - 9A/S, which corresponds to 

s2 = 5A/M. (3.11) 

Defining 

t’ = l/s = gM/5A (3.12) 

we calculate the value of t f  from the data given later: 

= 7.4 x 10-14 S .  (3.13) 

When t 
It should be pointed out that the stability analysis discussed above is still valid for 

the solitary-wave solution in the case of u # 0. For u # 0, we perform the Lorentz 
transformation 

z+ = y(z - u t )  (3.14) 

t -+ (T = y(t - uz/c2) (3.15) 

m--, y [ d / a v  - (u / c2>(a / a4 l  (3.16) 

t’, up(z, t) and hence the u(z,  t)-values diverge quickly. 
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a / d t +  y [ a / a o  - u(a/a?7)] (3.17) 
and equation (2.8) is invariant to this transformation: 

u(z,  t )  + a(q, a) = U 

ii,, = c2iii,, - w;ii + A2ii.2. 
(3 .18~)  
(3.18b) 

In the new coordinate system we may regard the speed of the solitary wave as zero. For 
any U < c and any fixed position in z ,  an increase in 0 implies an increase in t. Therefore 
the conclusion of an instability remains valid for U # 0. Note that it is quite different 
from the situation of the sine-Gordon and Korteweg de Vries (KDV) equations, in which 
the solitary waves or solitons are stable according to the linear stability analysis. 

4. Numerical estimate of parameters and a study of the H-bond energy 

There are three parameters A ,  B and S in this model, where A and B were given by 
Yomosa [6]: 

We know that the G-C base pair has three H bonds while the A-T base pair has two H 
bonds. For the naturally occurring DNA molecule, the ratio of A + T to G + C is in the 
range 0.98-1.12 to 1 [4], i.e. very close to 1 to 1. Therefore, instead of A and B ,  
we should use A’  and B’ in the calculation hereafter, where A’ = 2.5A, B‘ = 2.5B. 
According to equation (2.21) the amplitude of the solitary wave is 

Note that the equilibrium distance of H bonds is about 2.9 A; so the amplitude of the 
solitary wave is only 12.8% of that distance. Note also that this quantity is independent 
of the structure of DNA and is dependent only on the character of H bonds. 

A = 0.62 eV A-2 B = 0.83 eV k3. (4.1) 

A ,  = i(A’/B’) = i(A/B) = 0.37 A. (4.2) 

Let us take the effective mass M a s  [4] 

M = 307.3 g/N (4.3) 

w0/216 = (1/2n) v4A‘/M = 74.4 cm-’ (4.4) 

where N is the Avogadro constant. From equation (2.9) we find that 

which falls in the range 10-120 cm-’. 
It is difficult to estimate the parameter S. From the phonon mode solution (2.27) we 

know that c is the acoustic velocity associated with the motion of H-bond stretching. 
The acoustic velocity associated with the longitudinal motion of the bases was measured 
by Hakim et a1 [lo] as 1.69 km s-’ for B-DNA. The acoustic velocity associated with the 
torsional motion of the bases was estimated to be 1.3 km s-l [ l l ] .  If we take c = 1.5 km 
s-l, we obtain 

Then according to equation (2.25) the rest energy (U = 0) of the solitary wave is 
S = A  = 0 . 6 2 e V k 2 .  (4.5) 

E$’) = E(A’/B’)2(d/a)A’ = 0.29 eV = 6.78 kcal mol-’. (4.6) 
At the same time 

d = 0 . 3 2 ~  (4.7) 
and so the width of the solitary wave is given by 

Turning to equation (3.12), where A should be replaced by A’, we obtain the result in 
equation (3.13). 

W = 4d = 1 . 2 8 ~  = 1 - 2bp. (4.8) 
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Figure 1. Plot of V ( r )  against r.  

Table 1. The theoretical and experimental values of energy required to melt a base pair. 

Energy (kcal mol-’) 
D 

G-C A-T (A’) 

Theoretical 3.55 2.31 0.0625 
Experimental 3.5 1 0.040 

The instability of the solitary wave (2.21) discussed above is directly related to the 
potential energy form of H bonds (equation (2.2)). Now we pay some attention to the 
potential 

V(r) = Ar2 - Br3. (4.9) 

V(r) is shown in figure 1 as a function of r.  It is seen that V has a maximum value at 
r = yo:  

v,,, = V(ro)  = & ( A / B ) * A  = 0.05 eV (4. loa) 

ro = $(A/B)  = 0.498 A.  (4. lob) 

Prohofsky [7] has defined a quantity called the vibrational fluctuation D on each H bond, 
where D = (uu), and he has found that, when the H bond attains a vibrational state at 
D = 0.040 A2, melting occurred. In this paper we are studyingonly the relative vibration 
of the complementary bases, i.e. U = - U ’ ;  so, when r = y o ,  U = - U ’  = ro/2, and 
D = r$’4 = 0.0625 A2.  That is to say, when the vibration is beyond y o ,  the H bond is 
broken. Since the G-C base pair has three H bonds, and the A-T base pair two H bonds, 
we obtain the values of energy to melt a G-C or A-T base pair by simply multiplying by 
3 or 2 respectively, in equation (4 .10~) .  The results are listed in table 1, where the 
experimental results [7] are also shown. 

The amplitude of the solitary wave (2.21) is determined from equation (4.2), cor- 
responding to Y = 0.74 A > yo. Therefore, in the centre of the solitary wave, at least one 
H bond is melted. This is closely related to the instability of the solitary wave. 
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Finally, as pointed out by Yomosa [12], when r 3 y o ,  the potential (4.9) is only valid 
approximately and, when r S ro,  it is incorrect. Only when r < r,, is the formula justified. 

5. Numerical simulation 

Since the numerical simulation of sine-Gordon soliton dynamics by Currie et a1 [13], 
much similar work has been done [14-181. If the kink width is of the order of the lattice 
spacing, a lattice-pinning effect has been observed by these researchers. The pinning 
effect means that the kink is pinned by the lattice. In this case the continuum approxi- 
mation is no longer valid. Note that the width of the solitary wave (2.21) is of the same 
order as the base spacing (equation (4.8)); it is reasonable to conclude that the continuum 
approximation (2.7) is also no longer valid. This conclusion has been confirmed by the 
following numerical simulation. 

Let us consider the non-linear differential-difference equation (2.6). Let U ,  be in 
Angstroms, n in units of a (a = 3.4 A) and t in units oft’, where 

t i  = VZj5 = 2.27 x 10-l~ S. 

d2U,/dT2 = - 1 0 ~ ~  + 4 0 . 1 6 ( ~ , ) ~ + ( ~ , + 1  - 2 ~ ,  + U , - , ) .  

(5.1) 

( 5 4  

Letting T = t/t’, then equation (2.6) reduces to 

Let the time T be divided into It, 22, 3 t ,  . . . , j r ,  . . . , and let u,( j t )  be denoted by 
U’,. Taking the approximation 

d2u,/d T2 = (uL” - 2 ~ ’ ,  + u’,-l)/t* 

U’,” = ~ u ’ , + T ~ [ u ~ + ~  -12~’,+40.16(~’,)* + uL-~]-u’,-’. 

(5.3) 

(5.4) 

we obtain 

It is shown by the difference scheme that, if the displacements in the present time T = 
jt and the past time T = ( j  - 1)t are known, then the displacements in the future time 
T = ( j  + 1 ) t  can be calculated. The value of t should be small enough to avoid possible 
numerical instability. Typical values of z that we use are 0.05,0.01,0.001, etc. 

We use the solitary-wave solution (2.21) as the initial conditions for equation (5.4). 
Setting U = c/2, we take 

(5 .5a)  

(5.5b) 

U :  = u(na, 0 )  = 0.37 sech2(n/0.55) 

U: = U: + u,(na, t)l, ,ot 

n = - 2 0  ) . . .  , 0  , . . .  , + 2 0 .  (5.5c) 

The evolution of U’, with respect to the time is shown in figure 2, where t = 0.05. The 
result shows that: 

(i) the solitary wave is really pinned by the lattice; 
(ii) the width of the solitary wave remains unchanged when the time increases; and 
(iii) the amplitude of the solitary wave increases quickly when the time increases 

and, in particular, when T = 132, i.e. t = 13tt’ = 1.48 X s, the amplitude becomes 
infinite (i.e. overflow in the computer). 

Note that when the amplitude is greater than ro (0.498A), the solution becomes 
meaningless, since the potential in equation (4.9) is incorrect in this case. In order to 
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-4 -2 0 2 4 Figure 2. The evolution of the solitary wave with o.4k n [uni ts of a1 respect to time. 

estimate the lifetime of a solitary wave more precisely, we should study the case in which 
the amplitude is less than yo. Instead of equation (5.5a), if we use the initial condition 

= 0.24 sech2 (n/O. 55 )  (5.6) 

then the solution of equation (5.4) is really no longer divergent. We have observed an 
unstable breather solution, which decays into the acoustic vibration distributed in both 
sides of the breather. The lifetime and the frequency of the breather are ‘measured’ to 
be about lo-” s and 1012 Hz, respectively. The lifetime t h  of the breather is defined as 
usual, i.e. lub(t = zb)/uxI = l /e .  Note that the lifetime estimated by the numerical 
analysis under the condition r < ro is much longer than that of the analytical study. Again 
note that equation (2.2) is only an approximate formula describing the H-bond potential. 
When r > ro the potential is meaningless. We think that the Lennard-Jones potential or 
the Toda lattice potential may be more suitable for describing the H-bond interaction. 
Study of the solitary excitation of H-bonds using these potentials is in progress. 

6. Discussion and conclusion 

In this paper we have proposed a model for the opening motion of the bases by taking 
the stretching of H bonds into account. Since the potential of the H bond is non-linear, 
it leads to solitary-wave excitation. The solitary wave in our model looks like a ‘hole’ in 
a DNA chain, extending several base pairs long. In the centre of the solitary wave the H 
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bonds are broken or melted. Because of the lattice-pinning effect the velocity of the 
solitary wave is zero, i.e. a pinned soliton. The energy of the solitary wave is only 0.2- 
0.3 eV; so it can be excited by the thermokinetic energy of the surrounding molecules 
or by the hydrolysis of the ATP molecules (releasing an energy of 0.49 eV each time). 
The solitary wave in our model is unstable; it leads to the melting of several H bonds 
within the solitary wave. The width of the solitary wave is estimated to be one to two 
base pairs only. This implies that the continuum approximation in equation (2.7) is no 
longer valid. The numerical solution of the non-linear differential-difference equation 
(2.6) in fact shows a pinning effect, i.e. the solitary wave is pinned by the lattice. Such 
a localized solitary wave provides a suitable mechanism for transcription and drug 
intercalation. A localized and an unstable solitary wave means a local melting of the 
DNA double helix, which yields a good opportunity for drug intercalation into DNA or 
the transcription of the information from DNA to mwA.  

In conclusion, we have proposed a solitary-wave model of DNA, based on the stretch- 
ing motion of the H bonds and its non-linear effect. The solitary wave is unstable and is 
pinned by the lattice. The energy of the solitary wave is so small that it can be excited by 
the thermokinetic energy of the surrounding molecules or by hydrolysis of the ATP 
molecules. The pinned solitary wave provides a suitable mechanism to explain the 
transcription process and drug intercalation into DNA, etc. 
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